Presented to
Melvin Calvin
on the occasion of his
Remsen Memorial Lecture

sponsored by
The Maryland Section of the American
Chemical Society
in memory of
Ira Remsen
Teacher, Investigator, Author, Administrator

June 3, 1957
Greater Value
Kimble thermometers and hydrometers bring you unequaled accuracy and durability at a price that makes them today’s greatest value.

KIMBLE LABORATORY GLASSWARE AND PRODUCT
OWENS-ILLINOIS
GENERAL OFFICES - TOLEDO, OHIO

THE CHESAPEAKE CHEMIST
VOL. 13 MAY, 1957 NUMBER 5

The Chesapeake Chemist is published each month from September through May by the Maryland Section of the American Chemical Society.

EDITORIAL STAFF
EDITOR
Gilles B. Cooke
Crown Cork & Seal Company

ASSISTANT EDITORS
Raymond C. Crippen
Crippen & Erlich Labs.
John W. Gryder
Johns Hopkins Univ.
Mrs. Joyce J. Kaufman
Johns Hopkins Univ.
Richard J. Kokes
Loyola College
F. Timothy Pann
Washinghouse Elec. Corp.
M. Norman Timbs
Crown Cork & Seal Company

BUSINESS STAFF
BUSINESS MANAGER
Richard L. Hall
McCormick & Company

ASSISTANT BUSINESS MANAGERS
Raymond L. Costa
Mutual Chemical Division, A.C.D.C.
Charles A. Baker
Penniman and Browne

CONTRIBUTORS
Robert S. Alexander
E. I. du Pont de Nemours & Co.
R. J. Allgeier
Fort Detrick
Louis W. Clark
Saint Joseph College
Basil W. Clarke
Crosnes & Blackwell
Irving I. Cohen
Strasburger & Siegel
James M. Cole
Baltimore and Ohio RR
Raymond D. Daley
Esso Standard Oil Company
Walter H. DeCrette
Calvert Distilling Company
E. M. Glocke
Davison Chemical Company
H. Clifford Grant
Glen L. Martin Company
Wilmon C. Harden
Hynson, Westcott & Dunning
Keith H. Jacobson
Army Chemical Center
Louise Kelly
Goucher College
Walter H. Kuhl
McCormick and Company
Karl L. Lockwood
Western Maryland College
Sister Mary Louis
College of Notre Dame of Maryland
James M. Naughton
Olin Mathieson Chemical Corp.
William J. Schmitt
Woodstock College
Leroy H. Shuger
Baltimore Paint and Color Works
L. M. Soffer
Aberdeen Proving Ground
George H. Spaulding
Morgan State College
Herbert P. Strack
Lever Brothers Company
Theodore F. Strow
Armco Steel Company
Walter B. Tuemmler
Food Machinery and Chemical Company
Elmer Ware
Hood College
Mrs. Cornelia Williamson
Mutual Chemical Div., A.C.D.C.
Channing W. Wilson
Baltimore Gas and Electric Company
E. G. Vanden Bosche
University of Maryland

TABLE OF CONTENTS
The Twelfth Remsen Lecture 5
New Section Members 7
The Remsen Memorial Lecture, 1946-1957 9
Recent Meetings 10
Maryland Section News 13

COVER
This month’s cover shows the scroll traditionally given to the Remsen lecturer.
High temperatures—
up to 450°C
Six separately controlled heaters
Takes flasks 10 to 100 ml
Corrosion-resistant

THE TWELFTH REMSEN LECTURE

Date:
Monday, June 3, 8:30 P.M.

Place:
Shriver Hall, John Hopkins University

Speaker:
Dr. Melvin Calvin, Professor of Chemistry and Director, Bio-Organic Group, Radiation Laboratory, University of California.

Subject:
Following The Trail of Light

Abstract of the Address—

The early practitioners of what we call 'modern science' were, first of all, scientists before they were specialists. The increasing size and complexity of the body of scientific knowledge is resulting in a fragmentation and specialization that any activity which overlaps even a small area of science today evokes special comment. The work that I want to describe for you briefly this evening is the result of such an activity. The availability of large amounts of carbon-14 as a result of the developments of nuclear physics, combined with some techniques of physical chemistry and organic chemistry, were applied to a fundamental biological problem.

The overall problem is that of determining the mechanism employed by autotrophic organisms, of which the green plants are the principal example, in converting solar energy into chemical potential in the form usually of carbohydrate and oxygen. The design of the experiment is straightforward, once the tracer isotope of carbon became available. The green plant is exposed to the marked carbon dioxide for limited periods of time, during which the carbon dioxide enters the plant and begins its travels through the metabolic system to become carbohydrate and other plant materials. By stopping this process after suitable intervals and determining where the marked carbon is to be found, it has been possible for us to construct a fairly complete map of the principal early stages by which carbon is transformed from a compound of low potential energy (CO₂) into compounds of higher chemical potential (carbohydrate and oxygen).

The principal analytical method employed is that of paper chromatography, which depends upon the differential distribution of various compounds, usually between two liquid phases (or more). At this point, the compounds have to be identified and then their radioactive constitution determined. The variability of this pattern amongst organisms must also be examined in order to determine what is common and what is not.

From such data at these we were able to devise a sequence of reactions, which turned out to be a cycle, by which all autotrophic organisms absorb carbon dioxide and generate from it reduced carbon in the form of carbohydrate, fat, and protein. Now that the fundamental carbon incorporation scheme is known, we can begin to manipulate some of the subsequent reactions so as to determine the nature, or at least the amounts, of storage products in the plant. For example, we have succeeded in multiplying the rate of synthesis of sucrose in plants by factors of two or three with a judicious choice of chemical agents which could influence certain reactions and not others.

(Continued on page 6)
However, the remaining problems of how the initial photon is first converted to chemical potential and how the oxygen atom of the water molecule finds its way into the carbon atom still are much in the dark. The methods which appear most promising for attack on these two problems involve again the cooperation of fundamental new concepts of physics, or chemistry and of biology, as we are being attacked with great success by teams of scientists consisting of men, each specializing in a very specific area of what today have grown to be quite distinct areas of knowledge and inquiry. In fact, such interdisciplinary teamwork is being regarded as an essential feature of most scientific work today. One element in the success of such teams is the more rapid transformation of the originally highly specialized ideas into more general conceptions, followed by the wide dissemination of these more general conceptions throughout the entire scientific community. This process is perhaps best considered by the number of ways. The first, and most obvious, is the mutual stimulation of men working together and by continuous informal discussions gradually evolving, in the group as a whole, new notions and new developments which could hardly be attached to any one individual in the group. This is in contrast to the situation which obtains in individual work which does not overlap very much into two or more present-day areas of science. Here, the new development is more or less easily attached or recognized as the 'brain child' of a single individual.

It is my feeling, however, that the synthesis of a really new conception which involves contributions from two or more distinct disciplines of science requires some sort of union in one mind of the various pertinent aspects of the two disciplines. The more of the various aspects of scienceich his mind can and does truly encompass, the more likely is a new synthesis to be achieved. In order for this to take place, it is necessary that the individual undertake absorption of the knowledge in areas other than the one in which he is expert. This must be followed by its active use, even to the point of original contribution, to specialized work which could be considered definitely outside the region of his original scientific birthright. In this way, when the era for more scientists and engineers to man our increasingly complex environment, I would ask that the fundamental nature of scientific inquiry (the study of the nature of all things around us and in us) be not overlooked. I do not speak of science for the sake of science, as a subject in its own right. I speak of active absorption of and participation in more than one of the sciences, to create new classifications and expose new relationships. Ultimately, we may thus create new classifications and expose new relationships.

In order to foster this, it seems to me that all educators must be carefully examined. This education must be such as to make the scientist to explore deeply and well some particular area of natural phenomena. There is no substitute for the concentration of thought. However, it must be accompanied by the stimulus of a very rich handiwork to follow, and, in fact, has the duty to follow, the exploration of any natural phenomena into whatever area the light may lead him. In this way will the creation of new horizons overlapping existing subdivisions be encouraged. Without it, we will be limited to the classifications and subdivisions of science developed during the 19th and early 20th centuries, and our thoughts, conceptions and even practical methods will be circumscribed by the very words and modes of expression in which each subdivision of today tends to use).

The Speaker:

Dr. Calvin was born in St. Paul, Minnesota. He graduated from Michigan College of Mining and Technology at Houghton in 1931 and received the Ph.D. degree in 1935 from the University of Minnesota. In 1955 he was given the D.Sc. honorary degree from Michigan.

From 1935 to 1937 Dr. Calvin carried out post-doctoral research at the University of Manchester, England. He became an instructor at the University of California in 1937, with successive promotions to assistant professor and associate professor. Since 1946 he has been Director of the Bio-Orgainic Group at the Radiation Laboratory. In 1947 he became Professor of Chemistry.

Dr. Calvin has written three books and over two hundred papers in the fields of organic chemistry, physical-organic chemistry, biochemistry and photosynthesis. He is a member of numerous scientific societies including the American Chemical Society (councilor since 1944), British Chemical Society, National Academy of Sciences and Radiation Research Society.

Dr. Calvin has been the recipient of many honors. Among them is: Harrison Howe Lecturer, Rochester Section, ACS, 1955; by the ACS, 1956; by the ACS, 1955; Donegan Foundation Lecturer, Italian National Academy of Science, Rome, Italy, 1955; and the T.W. Richards Medal, Northeastern Section, ACS, 1956.

Dr. Albert L. Lehninger

Dr. Albert L. Lehninger, De Lamar Professor of Physiological Chemistry and Director of the Department, School of Medicine, Johns Hopkins University, will introduce Dr. Calvin.

Dr. Lehninger is a native of Connecticut. He graduated from Wesleyan College in 1939 and entered the University of Wisconsin for postgraduate study where in 1942 he received the Ph.D. degree. Dr. Lehninger taught physiological chemistry at Wisconsin, first as instructor and later as assistant professor. In 1945 he joined the faculty at the University of Chicago where he taught biochemistry, first as associate professor and later as professor.

Dinner:
The lecture will be preceded by a reception and dinner in honor of Dr. Calvin which will be held at the Johns Hopkins Club on the Homewood Campus at 6:30 P.M. (D.S.T.) and will be open to members of the Maryland Section and their guests. Formal dress is optional. Since space in the dining room is limited, only the first fifty reservations can be accepted. Reservations should be made by Monday, May 27, with Dr. Raymond M. Burgison, University of Maryland, School of Medicine, 29 South Greene St., Baltimore 1, Md., telephone PLaza 2-1100, and must be accompanied by a remittance of $3.25 for each dinner.

NEW SECTION MEMBERS

New Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donald R. Hall</td>
<td>Aberdeen Proving Grounds, Md.</td>
<td></td>
</tr>
<tr>
<td>Robert J. Peterson</td>
<td>Fort Detrick, Md.</td>
<td></td>
</tr>
<tr>
<td>Louis J. Sellmayer</td>
<td>Fine Organic Chemicals Division</td>
<td></td>
</tr>
<tr>
<td>Robert H. Weaver</td>
<td>Food Machinery and Chemical Corp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graduate School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Maryland</td>
<td></td>
</tr>
</tbody>
</table>

Transfers

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred C. Blanck</td>
<td>Retired</td>
<td></td>
</tr>
<tr>
<td>Ralph Seefeld</td>
<td>Army Chemical Center, Seattle, Wash.</td>
<td></td>
</tr>
<tr>
<td>2nd Lt. Robert D. Stolow</td>
<td>Operations Research Group, Northern Alabama</td>
<td></td>
</tr>
<tr>
<td>Pvt. Freeman Young</td>
<td>Army Chemical Center, Md.</td>
<td></td>
</tr>
</tbody>
</table>

Consulting Chemists

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Research Chemists

FOSTER D. SNELL, INC.

Crippen & Erlich Laboratories, Inc.

1138 E. North Avenue

Baltimore 2, Md. Phone BElmont 5-6350

He came to Johns Hopkins University in 1942.

In 1951 Dr. Lehninger was an exchange professor at Frankfurt University, Germany, and during 1961-52 was a Guggenheim fellow and Fulbright scholar at Cambridge University.

He was with the Office of Scientific Research and Development in 1944. Dr. Lehninger received the Paul-Lewis Award in Biochemistry in 1948.

no
YOUR PLANTS WILL FLOURISH...WITH

NURISH is the amazing new plant food concentrate in the convenient powder form. It is completely dissolved in water and may be poured, sprinkled or sprayed on growing plants.

Plants, vegetables, flowers, etc., can take food only one way—by drinking it through the roots and through the leaves. NURISH gives your plants a balanced liquid diet of essential major and minor nutrients which can be absorbed instantly for quicker, fuller, more healthy growth.

For bigger, healthier plants use NURISH! Available in convenient to use 1 lb. packages.

Progress Through Chemistry
DAVISON CHEMICAL COMPANY
Division of W. R. Grace & Co.
Baltimore 3, Maryland

You can receive a folder giving all the information about NURISH as well as a plant feeding guide by writing or calling:

Davison Chemical Company,
Division of W. R. Grace & Co.,
Mixed Fertilizer Division, Department G, 101 North Charles Street,
Baltimore 3, Maryland.

THE REMSEN MEMORIAL LECTURE, 1946 – 1957

In May, 1946, the Maryland Section of the American Chemical Society inaugurated a series of annual lectures in honor of Ira Remsen, first Professor of Chemistry and second President of The Johns Hopkins University. The first: Remsen Memorial Lecture was part of the centennial celebration of Remsen's birth. It was the intention of the Maryland Section that Remsen Memorial Lecturers should be chemists of outstanding ability, as exemplified by Ira Remsen's long and devoted career as an exponent of the highest standards in teaching and research in chemistry. That the intentions of the Section have been fulfilled is attested by the great honor and esteem that have been associated with the receipt of the Remsen Memorial Lectureship.

Ira Remsen was born in New York City on February 10, 1846. He studied at the Free Academy—now the College of The City of New York—and later earned his M.D. at the Columbia College of Physicians and Surgeons in 1867. Remsen's interest in chemistry eclipsed his interest in medicine, however, and in the same year he went to Germany to study chemistry and prepare for a career in chemical research. During his five year stay in Germany, he worked under Volhard at Munich and Fittig at Göttingen, earning his Ph.D. from the latter institution in 1870. After two years post-doctoral work with Fittig, he returned to the United States in 1872. He served as Professor of Chemistry and Physics at Williams College, Williamstown, Massachusetts, until 1876, when he accepted the chair of chemistry at the newly-founded Johns Hopkins University. He filled this position with distinction for twenty-five years, until 1901, when he succeeded Dr. Gilman as President of the University. Dr. Remsen served as President until his retirement in 1919. During his long and active career a steady stream of papers and articles emanated from his laboratory, and no less than 150 papers, mostly in organic chemistry, appeared under his name. He also wrote eight textbooks which were widely used and went through many editions in English and many foreign translations. Hundreds of Remsen's students went forth to become leaders in research and teaching and to pass on to later generations the inspiration imparted to them by their great teacher. It has been said that as a teacher, research worker, and writer, Remsen is more directly responsible for the development of chemistry in the United States than any other man. Until his death in 1927, Dr. Remsen remained keenly interested in chemistry, and he served at various times as President of the American Chemical Society, the American Association for the Advancement of Science and the National Academy of Sciences. Numerous honorary degrees and awards were bestowed upon him during his long and illustrious career.

The Remsen Memorial Lecture, delivered each spring, is the highlight of the year's activities for the Maryland Section. The Remsen Lecturer is chosen by a special committee who meet early in the year to consider possible candidates for the honor. A reception and dinner in honor of the recipient of the award is held at the Johns Hopkins Club and is attended by officials of the Johns Hopkins University, the American Chemical Society and many members of the Maryland Section. The Lecturer is introduced by a distinguished colleague, and after his address, he is presented with the engraved Remsen Memorial Scroll and an honorarium from the chemists of the Maryland Section.

The following is a list of past Remsen Memorial Lecturers and the titles of their talks:

1946—Prof. Roger Adams, University of Illinois
“Chemical Research in the War and Postwar Period”

1947—Prof. Samuel C. Lind, University of Minnesota
“Fifty Years of Atomic Research”

1948—Prof. Emeritus Elmer V. McCollum, The Johns Hopkins University
“Vitamins and Public Health”

1949—Prof. Joel H. Hildebrand, University of California
“A Philosophy of Teaching”

1950—Dr. Edward C. Kendall, The Mayo Foundation
“Studies Related to the Adrenal Cortex”

(Continued on page 10)
LAB. NOTEBOOKS
For Patent Protection
and Regular Lab. Work

STOCK BOOK—
50 PAGES IN DUPLICATE
Scientific Bindery Productions
608 So. Dearborn St.
Chicago 5, III.

Recent Meetings
The February meeting of the Maryland Section of the American Chemical Society was held February 15 in Remsen Hall, The Johns Hopkins University. The speaker was Dr. Alfred Burger of the University of Virginia, who addressed the Section on "The Present State of the Chemotherapy of Neuroplastic Diseases." In a field as obscure as cancer, the most rational approach for chemotherapy is to influence some of the small but significant biochemical differences between communal and neoplastic cells. The lecture discussed the biochemically-based line of chemotherapeutic research. Some very interesting speculation about new angles of approach was presented.

The meeting was preceded by a dinner in honor of Dr. Burger at the Johns Hopkins Club. The customary social hour followed the meeting. The attendance at the dinner was 17, and at the meeting was 62.

CORRECTION
Carl Webster was erroneously reported in February to have joined Olin Mathieson Chemical Corporation. He is with the Baltimore and Ohio Railroad Company and engaged in research and development on industrial cleaners and sanitizers.

Strasburger & Siegel, Inc.
Chemists, Bacteriologists, Consultants
Expert Testimony
1403 Eutaw Place
Baltimore 17, Maryland
Established 1926

RESEARCH, ANALYSIS
CONSULTATION
Toxicology, Pharmacology, Bacteriology, Biochemistry, Chemistry, Nutrition, Radiocchemistry
New Price Schedule Available

SCIENTIFIC ASSOCIATES
3735 Forest Park Avenue
St. Louis 6, Missouri
JEfferson 1-9322
MARYLAND SECTION NEWS

ARMCO STEEL CORPORATION

George E. Linnert, head of the welding group at the Armco Research Laboratories, was a principal speaker at sessions of the American Welding Society during the 10th Western Metal Congress which was held recently in Los Angeles. Mr. Linnert spoke on welding problems in Precipitation Hardened Stainless Steels, PH Stainless Steels, an Armco developed alloy, have found a variety of applications—from carpenter handsaws to supersonic aircraft and missiles.

Crippen & Erlich Labs., Inc.

Raymond C. Crippen, Director of Crippen & Erlich Labs., Inc., was recently elected vice president of the Maryland Section of the American Institute of Chemists. Father Hauber, of Loyola College, was elected president and Miss Dorothy Rice was elected secretary-treasurer.

The Crippen & Erlich Labs., Inc., announces the acquisition of a 3,5 meter grating spectrograph complete with the spectrographic laboratory and dark room. The instrument is being calibrated for both ferrous metals and non-ferrous metals. A complete set of standards was obtained with the instrument. The instrument is also being calibrated for use with various rare earths and rare metals. The laboratory will supplement its usual work in metals with this new instrument. Graduate spectrographers will assist on the instrument.

AMERICAN BIO-CHEMICAL LABORATORY

American Bio-Chemical Laboratory announces that Mr. J. J. Broening has joined its staff and will head its Industrial Testing Service division. Mr. Broening brings to this organization a wealth of diversified experience which will permit its further expansion along the lines of metals assays, insecticide testing and general inorganic analyses.

DAVISON CHEMICAL COMPANY

A new Davison Chemical Research Laboratory is nearing completion approximately midway between Baltimore and Washington on Route 32, ½ miles southeast of Clarksville in Howard County. The modern three-story, fireproof, steel and brick, air-conditioned building is situated on a wooded knoll in a 10 acre tract. The site has been chosen to provide accessibility to downtown Baltimore, to Davison’s Curtis Bay plant, and to desirable residential areas.

Versatility has been the keynote in the planning of the laboratory in order to provide for a wide range of chemical research. Analytical facilities include X-ray diffraction equipment, an emission spectrophotometer, a mass spectrometer, and an electron microscope. The value of these and other instruments is about $250,000. In addition to the laboratories there are administration offices, a library with provision for ten thousand volumes, and a cafeteria.

Davison’s Research and Development staff, presently located at Curtis Bay, has increased several fold in recent years, and will nearly fill the new building.

WESTINGHOUSE AIR ARM DIVISION

F. T. Parr, chemist in the Materials and Process Group, recently presented a paper at the First Technical Forum of the Society of Plastics Engineers held at the Naval Ordnance Lab, White Oak, Maryland. The paper discussed the use of silicone rubber resins and laminates as electrical insulation at temperatures ranging from 200°C to 300°C.

Arthur L. Barry, Jr., who holds a B.S. in Chemical Engineering from Catholic University, Washington, D. C., has recently joined the Materials and Process group. Art comes to us from the U.S. Rubber Company, Naugatuck, Connecticut, where he was employed as a development chemist on sponge rubber products and rubber footwear. At Air Arm, he will be responsible for problems dealing with adhesives, silicone rubber, natural and synthetic rubber.
Specialists in Scientific Supply

DIRECTED AIR FLOW FOR
FASTER UNIFORM HEATING

BLUE M STABIL-TERM
RECYCLING VERTICAL AIR FLOW
OVENS

Better Results For Less Money
WHY? New directed vertical air flow; turbo blower — powerful motor produces stable uniform temperatures equal to conventional ovens costing many times more.

GUARANTEED 1 YEAR

NEW DESIGN—FOR NEW EASE OF OPERATION
Quality Construction—outstanding performance—for analytical laboratory and general chemical processes or production.

- Automatic Trigger Control
- Response Sensitivity ± 0.5°C
- 19" W x 15" D x 18" H I.D.
- Wattage Selection to Save Power
- 100°F to 500°F Range
- Double Wall Design
- Full 3" Fiberglass Insulation
- Stainless Interior, 18-8

WILL NO. 207864
Enamel Exterior
1600 Watts
115 V or 230 V, 60 CY, A.C.
Available also with Stainless Exterior as well as interior for $95.00 additional.

$325.00

OTHER MODELS AVAILABLE WITH INDICATING AND CONTROLLING THERMOSTAT For Temperature Range From 38°C to 343°C (650°F.)
Write for further specifications.

Will CORPORATION of MD.

Specialists in Scientific Supply

5-31 N. HAVEN ST., BALTIMORE 24, MD.
Telephone Dickens 2-4850

Bulk Rate
U. S. Postage
Paid
U. S. Postage
Baltimore, Md.
Permit No. 2917